Forests
13 May, 2025

● Temperate forests are in temperate regions of the earth including North America, Europe and Asia. They have four well-defined seasons and a growing season between 140 and 200 days. Rainfall takes place throughout the year and soils are nutrient-rich.
● Tropical forests are located in equatorial regions between 23.5°N and 23.5°S latitude. They experience two seasons, a dry season and a rainy season. The length of each day varies little throughout the year. Soils in tropical forests are nutrient-poor and acidic.
● Boreal forests make up the largest terrestrial habitat. They are a band of coniferous forests located in the high northern latitudes between about 50°N and 70°N. Boreal forests create a circumpolar band of habitat from Canada, to northern Europe, to eastern Russia. They are bordered by tundra habitat to the north and temperate forest habitat to the south.
Some of the wildlife that inhabit the forest biome include deer, bears, wolves, moose, caribou, gorillas, squirrels, chipmunks, birds, reptiles and insects.
TEMPERATE FORESTS
Temperate forests are found in a wide range of climates and are some of the richest habitats earth. Temperate forests are home to a variety of plants and animals. Some live within them year-round, while migratory animals visit them seasonally.
The two main types of temperate forests are deciduous forests and evergreen forests.
Deciduous forests contain trees that loose their leaves in the fall. They are usually located in the Northern Hemisphere in parts of North America, Europe and Japan.
Evergreen forests are made up of trees that don't lose their leaves in the fall. They usually are found in warmer climates in South America, southern Europe, South Africa and parts of southern Australia. A more varied range of wildlife is often found in evergreen forests than deciduous forests.
A wide variety of animals call temperate forests home. Mammals, reptiles, amphibians, birds and insects live in temperate forests. The most common mammals are deer, squirrels, birds and wild boars.
Since food is plentiful in evergreen forests year round, even more varieties of wildlife inhabit them. Reptiles, amphibians, birds, mammals and insects are plentiful in evergreen forests.
Temperate forests once covered huge areas of the Northern Hemisphere. As a result of logging and deforestation for agriculture, most forests are already gone.
CONIFEROUS FORESTS
Coniferous forests are located in the far north, many within the Arctic Circle. They are predominantly home to conifers, the toughest and longest living trees. Conifers grow close together resulting in dense forests that are sheltered.
Coniferous forests include boreal forests and temperate forests.
Boreal forests stretch across the far north. Temperate coniferous forests are located in western North America, New Zealand and Chile. Some trees in the temperate coniferous forests in North America are over 500 years old.
Boreal coniferous forests stretch across the far north from Siberia, through Northern Europe, to Alaska, covering a distance of 6 million square miles. They are 1,000 miles wide in places. A large proportion of boreal coniferous forest is in the Arctic Circle, where plants and animals are well adapted to cold temperatures.
While fewer plant and animal species are found in coniferous forests compared to temperate forests and rainforests, many plants and animals still live within them. Conifer trees withstand the cold. Their pine needles are acidic, which passes into the soil when needles drop, allowing only acid loving plants to survive in coniferous forests. Only herbivores that survive on acidic plants can inhabit coniferous forests.
Insects make up the majority of animals found in coniferous forests. The dense trees provide ideal habitat for them to build their nests. Deer, elk, wolves and bears are also common in coniferous forests.
Coniferous forests are the least affected forests by humans. The trees are softwood and usually only used for making paper. Larger areas of coniferous forests are being logged however, as paper demand increases.
RAINFORESTS
Rainforests are home to more than 50% of all living species on the planet. They receive an abundance of rain and contain extremely diverse wildlife. The two main types of rainforest are tropical rainforests and seasonal rainforests.
Tropical rainforests are close to the Equator where the climate is warm, providing ideal conditions for plants. 170,000 of the world’s 250,000 known plant species are found in tropical rainforests. They have various layers of canopy providing a wide variety of habitats for animals. A large collection of tall tree species is made possible by a constant water flow. Tropical forests are home to smaller primates and bird species than seasonal rainforests.
Seasonal rainforests are usually further away from the Equator. Their climate is less stable then tropical rainforests. Rather than rain being dispersed evenly throughout the year, it comes all at once in what is called the monsoon. Trees in seasonal rainforests are generally much smaller than those in tropical rainforests. Larger animals inhabit the changing seasonal rainforests, such as tigers, primates and large snakes.
The broad array of animals found in rainforests include mammals, reptiles, birds and invertebrates. Mammals include primates, wildcats and tapirs. Reptiles include a variety of snakes, turtles and lizards. Numerous species of birds and insects live in rainforests. Fungi is common, which feed on the decomposing remains of plants and animals. Many animal species have adopted a tree-dwelling (arboreal) lifestyle in the rainforest. Food is abundant in the forests due to the amount of water and plant life.
Numerous plant and animal species are rapidly disappearing from rainforests due to deforestation, habitat loss and other human activities. Around 50 million people live in rainforests. Their habitat and culture is also threatened as an alarming amount of rainforest land disappears each year.
10 Interesting Facts About Energy
13 May, 2025

Coal is king, but not everywhere. In the United States, coal makes 39% of our electricity. It's burned in a power plant, and the heat is used to boil water. The steam moves a turbine and generates electricity. In West Virginia, over 90% of the electricity is generated from coal. But in California, only 1% of electricity is generated from this fossil fuel.
Daylight saving time is good for the planet. When we turn our clocks forward each spring, we move an hour of daylight toward the end of the day. In 2008, we had four extra weeks of Daylight Saving Time. Scientists studied how much energy we saved. Turns out, we saved 0.5% of electricity. Even though that sounds small, it's actually 1.3 billion kilowatt-hours. That's how much electricity 100,000 houses use in a whole year.
Every state uses hydropower for electricity. A flowing river is powerful. We can use the flow to make electricity. Ancient Greeks built water wheels to grind grain thousands of years ago. Today, every state uses hydropower, which is electricity from the flow water. In Washington State, 70% of the electricity comes from hydropower. Hydropower plants are inside dams, like the Hoover dam. Some places don't build dams. They use just part of a river to make electricity.
The United States is a world leader in wind. Wind has been a source of renewable energy since the invention of the windmill thousands of years ago. Today's wind power is made from big wind turbines. They're over 300 feet tall. Some have 8,000 parts. Along with China, Germany, Spain, and others, the United States is using wind to make lots of electricity.
The first solar powered satellite is still in orbit. The sun gives us lots of energy everyday. It hits us with 10,000 times the world's total energy use. The space industry has used solar power since the 1960s. It's great for spacecraft. Vanguard 1 was the first spacecraft to use solar cells. It's the oldest artificial satellite still in orbit around Earth.
We can get energy from trash. All that waste we flush down the toilet and put in our trashcans doesn't have to go to, well, waste! When waste breaks down, it can release methane, a natural gas. We can trap that gas and use it to make electricity. This is also helpful because methane is a greenhouse gas. If we use it, we keep it out of the atmosphere. This is great for the environment.
Electric vehicles are great, but not everywhere. Cars that run on electricity instead of gas don't release pollution. But when you charge the car at home, where does that electricity come from? If the electricity comes from renewable sources, electric cars are great for the environment. But if you charge a car with electricity made from coal, it's not as good. The car doesn't pollute, but the power plant that charges that car does.
We need better batteries. You might be surprised, but batteries need a lot of work. They don't store enough energy. For us to use solar power and wind power, we need to be able to store a lot of energy. That way, we can still have electricity on cloudy days with no wind. Lots of researchers are working to make better batteries that last longer and hold more energy.
We measure energy in BTUs. When we talk about energy, we all need to use the same unit to compare numbers. Just like we might use feet or meters to talk about length, we need a unit for energy. The standard unit of energy is called the BTU. That stands for British Thermal Unit. It's the amount of energy needed to raise the temperature of a pound of water by one degree Fahrenheit. When you burn a four-inch kitchen match, it releases about 1 BTU of energy.
What Is Ocean Acidification?
13 May, 2025

For more than 200 years, or since the industrial revolution, the concentration of carbon dioxide (CO2) in the atmosphere has increased due to the burning of fossil fuels and land use change. The ocean absorbs about 30 percent of the CO2 that is released in the atmosphere, and as levels of atmospheric CO2 increase, so do the levels in the ocean.
When CO2 is absorbed by seawater, a series of chemical reactions occur resulting in the increased concentration of hydrogen ions. This increase causes the seawater to become more acidic and causes carbonate ions to be relatively less abundant.
Carbonate ions are an important building block of structures such as sea shells and coral skeletons. Decreases in carbonate ions can make building and maintaining shells and other calcium carbonate structures difficult for calcifying organisms such as oysters, clams, sea urchins, shallow water corals, deep sea corals, and calcareous plankton.
Pteropods are small calcifying (or shelled) organisms that live as zooplankton in the water column and are an important prey species for many fish. Changes in ocean chemistry can break down their calcium carbonate shell, ultimately leaving the marine food web at risk.
These changes in ocean chemistry can affect the behavior of non-calcifying organisms as well. Certain fish's ability to detect predators is decreased in more acidic waters. When these organisms are at risk, the entire food web may also be at risk.
Ocean acidification is affecting the entire world’s oceans, including coastal estuaries and waterways.
Urban Ecosystems
12 May, 2025

Animals in these areas have had to adapt. They have learned to create new homes within their artificial environments. They have also discovered new food sources, including waste created by humans. Food chains of numerous species have been altered.
Urban areas range from fully urban with little green space and mostly covered by paving or buildings, to suburban areas with gardens and parks. Different types of urban areas support different kinds of wildlife. Some animals find shelter in city parks, trees and water sources. Some live inside the city; others just outside the urban habitat.
Insects, reptiles and rodents make nests inside buildings in small gaps and crevices to find shelter from the elements and protection from predators. Birds nest on buildings. Some animals live under homes and buildings. Some make homes in city sewer systems.
Animals have cleverly adapted to their changing world. Some city animals have become nocturnal, using city lights to aid in finding prey. Feral dogs have learned to use subway systems. Urban monkeys and penguins raid human homes to take food. Some steal fruit from vendors. Older deer learn to look both ways before crossing streets. Birds flock to city centers to snack on the food dropped in the streets.
Numerous threats for urban animals include traffic, litter, pollution, noise pollution, bright lighting and lack of space.
It is important to reserve space within urban environments for wildlife, and to conserve natural environments outside cities.
Desert Features
11 May, 2025

Oases are vegetated areas moistened by springs, wells, or by irrigation. Many are artificial. Oases are often the only places in deserts that support crops and permanent habitation.
Soils
Soils that form in arid climates are predominantly mineral soils with low organic content. The repeated accumulation of water in some soils causes distinct salt layers to form. Calcium carbonate precipitated from solution may cement sand and gravel into hard layers called "calcrete" that form layers up to 50 meters thick.
Caliche is a reddish-brown to white layer found in many desert soils. Caliche commonly occurs as nodules or as coatings on mineral grains formed by the complicated interaction between water and carbon dioxide released by plant roots or by decaying organic material.
Plants
Most desert plants are drought-or salt-tolerant. Some store water in their leaves, roots, and stems. Other desert plants have long tap roots that penetrate the water table, anchor the soil, and control erosion. The stems and leaves of some plants lower the surface velocity of sand carrying winds and protect the ground from erosion.
Deserts typically have a plant cover that is sparse but enormously diverse. The Sonoran Desert of the American Southwest has the most complex desert vegetation on Earth. The giant saguaro cacti provide nests for desert birds and serve as "trees" of the desert. Saguaro grow slowly but may live 200 years. When 9 years old, they are about 15 centimeters high. After about 75 years, the cacti are tall and develop their first branches. When fully grown, saguaro are 15 meters tall and weigh as much as 10 tons. They dot the Sonoran and reinforce the general impression of deserts as cacti-rich land.
Although cacti are often thought of as characteristic desert plants, other types of plants have adapted well to the arid environment. They include the pea family and sunflower family. Cold deserts have grasses and shrubs as dominant vegetation.
Water
Rain does fall occasionally in deserts, and desert storms are often violent. A record 44 millimeters of rain once fell within 3 hours in the Sahara. Large Saharan storms may deliver up to 1 millimeter per minute. Normally dry stream channels, called arroyos or wadis, can quickly fill after heavy rains, and flash floods make these channels dangerous. More people drown in deserts than die of thirst.
Though little rain falls in deserts, deserts receive runoff from ephemeral, or short-lived, streams fed by rain and snow from adjacent highlands. These streams fill the channel with a slurry of mud and commonly transport considerable quantities of sediment for a day or two.
Although most deserts are in basins with closed, or interior drainage, a few deserts are crossed by 'exotic' rivers that derive their water from outside the desert. Such rivers infiltrate soils and evaporate large amounts of water on their journeys through the deserts, but their volumes are such that they maintain their continuity. The Nile, the Colorado, and the Yellow are exotic rivers that flow through deserts to deliver their sediments to the sea.
Lakes form where rainfall or meltwater in interior drainage basins is sufficient. Desert lakes are generally shallow, temporary, and salty. Because these lakes are shallow and have a low bottom gradient, wind stress may cause the lake waters to move over many square kilometers. When small lakes dry up, they leave a salt crust or hardpan. The flat area of clay, silt, or sand encrusted with salt that forms is known as a playa. There are more than a hundred playas in North American deserts. Most are relics of large lakes that existed during the last Ice Age about 12,000 years ago. Lake Bonneville was a 52,000-square-kilometer lake almost 300 meters deep in Utah, Nevada, and Idaho during the Ice Age. Today the remnants of Lake Bonneville include Utah's Great Salt Lake, Utah Lake, and Sevier Lake. Because playas are arid land forms from a wetter past, they contain useful clues to climatic change.
Eolian Processes
Eolian processes pertain to the activity of the winds. Winds may erode, transport, and deposit materials, and are effective agents in regions with sparse vegetation and a large supply of unconsolidated sediments. Although water is much more powerful than wind, eolian processes are important in arid environments.
Wind erodes the Earth's surface by deflation, the removal of loose, fine-grained particles by the turbulent eddy action of the wind, and by abrasion, the wearing down of surfaces by the grinding action and sand blasting of windborne particles.
Most eolian deflation zones are composed of desert pavement, a sheetlike surface of rock fragments that remains after wind and water have removed the fine particles. Almost half of the Earth's desert surfaces are stony deflation zones. The rock mantle in desert pavements protects the underlying material from deflation.
Particles are transported by winds through suspension, saltation, and creep. Small particles may be held in the atmosphere in suspension. Upward currents of air support the weight of suspended particles and hold them indefinitely in the surrounding air. Typical winds near the Earth's surface suspend particles less than 0.2 millimeters in diameter and scatter them aloft as dust or haze.
Saltation is downwind movement of particles in a series of jumps or skips. Saltation normally lifts sand-size particles no more than one centimeter above the ground, and proceeds at one-half to one-third the speed of the wind. A saltating grain may hit other grains that jump up to continue the saltation. It may also hit larger grains that are too heavy to hop, but that slowly creep forward as they are pushed by saltating grains. Surface creep accounts for as much as 25 percent of grain movement in a desert.
Eolian turbidity currents are better known as dust storms. Air over deserts is cooled significantly when rain passes through it. This cooler and denser air sinks toward the desert surface. When it reaches the ground, the air is deflected forward and sweeps up surface debris in its turbulence as a dust storm. Crops, people, villages, and possibly even climates are affected by dust storms.
Most of the dust carried by dust storms is in the form of silt-size particles. Deposits of this windblown silt are known as loess. The thickest known deposit of loess, 335 meters, is on the Loess Plateau in China. In Europe and in the Americas, accumulations of loess are generally from 20 to 30 meters thick.
Small whirlwinds, called dust devils, are common in arid lands and are thought to be related to very intense local heating of the air that results in instabilities of the air mass. Dust devils may be as much as one kilometer high.
Eolian Deposition
Wind-deposited materials hold clues to past as well as to present wind directions and intensities. These features help us understand the present climate and the forces that molded it. Wind deposited sand bodies occur as sand sheets, ripples, and dunes.
Sand sheets are flat, gently undulating sandy plots of sand surfaced by grains that may be too large for saltation. They form approximately 40 percent of eolian depositional surfaces. The Selima Sand Sheet, which occupies 60,000 square kilometers in southern Egypt and northern Sudan, is one of the Earth's largest sand sheets.
The Selima is absolutely flat in some places; in others, active dunes move over its surface. Wind blowing on a sand surface ripples the surface into crests and troughs whose long axes are perpendicular to the wind direction. The average length of jumps during saltation corresponds to the wavelength, or distance between adjacent crests, of the ripples. In ripples, the coarsest materials collect at the crests. This distinguishes small ripples from dunes, where the coarsest materials are generally in the troughs.
Accumulations of sediment blown by the wind into a mound or ridge, dunes have gentle upwind slopes on the wind-facing side. The downwind portion of the dune, the lee slope, is commonly a steep avalanche slope referred to as a slipface. Dunes may have more than one slipface. The minimum height of a slipface is about 30 centimeters.
Sand grains move up the dune's gentle upwind slope by saltation and creep. When particles at the brink of the dune exceed the angle of repose, they spill over in a tiny landslide or avalanche that reforms the slipface. As the avalanching continues, the dune moves in the direction of the wind.
A worldwide inventory of deserts has been developed using images from satellites and from space and aerial photography. It defines five basic types of dunes: crescentic, linear, star, dome, and parabolic.
The most common dune form on Earth and on Mars is the crescentic. Crescent-shaped mounds generally are wider than long. The slipface is on the dune's concave side. These dunes form under winds that blow from one direction, and they also are known as barchans, or transverse dunes.
Some types of crescentic dunes move faster over desert surfaces than any other type of dune. A group of dunes moved more than 100 meters per year between 1954 and 1959 in China's Ningxia Province; similar rates have been recorded in the Western Desert of Egypt. The largest crescentic dunes on Earth, with mean crest-to-crest widths of more than 3 kilometers, are in China's Taklimakan Desert.
Straight or slightly sinuous sand ridges typically much longer than they are wide are known as linear dunes. They may be more than 160 kilometers long. Linear dunes may occur as isolated ridges, but they generally form sets of parallel ridges separated by miles of sand, gravel, or rocky interdune corridors. Some linear dunes merge to form Y-shaped compound dunes. Many form in bidirectional wind regimes. The long axes of these dunes extend in the resultant direction of sand movement.
Radially symmetrical, star dunes are pyramidal sand mounds with slipfaces on three or more arms that radiate from the high center of the mound. They tend to accumulate in areas with multi-directional wind regimes. Star dunes grow upward rather than laterally. They dominate the Grand Erg Oriental of the Sahara. In other deserts, they occur around the margins of the sand seas, particularly near topographic barriers. In the southeast Badain Jaran Desert of China, the star dunes are up to 500 meters tall and may be the tallest dunes on Earth.
Oval or circular mounds that generally lack a slipface, dome dunes are rare and occur at the far upwind margins of sand seas. U-shaped mounds of sand with convex noses trailed by elongated arms are parabolic dunes. Sometimes these dunes are called U-shaped, blowout, or hairpin dunes, and they are well known in coastal deserts. Unlike crescentic dunes, their crests point upwind.
The elongated arms of parabolic dunes follow rather than lead because they have been fixed by vegetation, while the bulk of the sand in the dune migrates forward. The longest known parabolic dune has a trailing arm 12 kilometers long.
Occurring wherever winds periodically reverse direction, reversing dunes are varieties of any of the above types. These dunes typically have major and minor slipfaces oriented in opposite directions.
All these dune types may occur in three forms: simple, compound, and complex. Simple dunes are basic forms with a minimum number of slipfaces that define the geometric type. Compound dunes are large dunes on which smaller dunes of similar type and slipface orientation are superimposed, and complex dunes are combinations of two or more dune types. A crescentic dune with a star dune superimposed on its crest is the most common complex dune.
Simple dunes represent a wind regime that has not changed in intensity or direction since the formation of the dune, while compound and complex dunes suggest that the intensity and direction of the wind has changed.
Saving Gorillas From Extinction
11 May, 2025

Gorilla populations have been greatly reduced by habitat loss, disease and poaching. Protecting gorilla populations has proved difficult due to the vast dense areas in which they live. Conservation efforts by governmental and non governmental organizations are desperately trying to save gorillas from extinction.
Eastern Gorillas
The Eastern Lowland gorilla, or Grauer's gorilla, is mostly found on the plains and lower slopes of the Virunga volcanic mountains of Central Africa. This habitat area of the ape entirely falls in the Eastern part of the Democratic Republic of Congo (DRC). This huge, hairy ape, with a shiny black coat, can measure up to 5 feet-6 inches while standing to its full height. They weigh as much as 550 lbs or 250 kilograms. The population of this subspecies has been reduced from around 5,000 in 2004 to only 3,800 .
The mountain gorillas are an endangered species exclusively dwelling in the Rwandan half of the Virunga volcanic mountains at altitudes of 7,000 to 14,000 feet. Like their Eastern lowland cousins, they have jet black hair but with a slight bluish tinge. While standing totally erect, the mountain gorilla is an impressive sight. Reaching a height of 6 feet-2 inches, it has an enormous arm span of 8 feet-6 inches and can weigh almost 500 lbs. There are only 880 of this sub-species left. Mountain gorillas were popularized by the film "Gorillas of the Mist" that portrayed the life of Diane Fossey, who spent two intrepid decades in the Rwandan mountains studying and fighting for the preservation of the apes.
For the mountain gorillas, major threats come from forest clearance and degradation as poor Rwandans desperately try to eke out a living. Clearing out land for agriculture and deforestation for firewood also puts a lot of pressure on the natural resources of the region and eventually on the habitat of these rare apes.
Western Gorillas
The Western lowland gorilla's habitat spans plains, forests and swamps of countries like Angola, Cameroon, Central African Republic, DRC, Equatorial Guinea and Gabon. They are smaller in size to the Eastern gorillas and have longer black hair covering almost their entire body. They number almost 125,000 and are inhumanely kept captive in zoos all over the world for human entertainment and profit.
The Cross River gorilla is a species found essentially in the Cross-Niger transition forests on the western half of the Cross River flowing into South-western Nigeria. Most of these hilly forests fall in Cameroon. They are a distinctive sub-species with short body hair and shorter skulls, smaller palates and smaller cranial vaults compared to the Western lowland gorillas.
The Western gorillas, that inhabit as many as 11 countries of Western Africa, are under threat from logging, hunting, disease and even trigger-happy militia. They often come into direct confrontation with man. Many of them are killed for their meat by impoverished and hungry tribesmen. Apes can be seen as a nuisance, too. Forced to move away from a shrinking habitat, the animals raid crops. A single group of gorillas can easily destroy an entire harvest. Villagers feel they have no recourse but to kill the animals. Only 250 to 300 of these creatures are left, making them one of the most endangered animals on the planet.
Threats To Gorillas
The greatest threat to gorillas is human poverty. They inhabit countries which are among the poorest in the world but with a high density of human population.
Being closely related to the humans anatomically, apes are susceptible to disease as much as man. Not just from poachers and militia groups, but exposure to well-meaning humans like tourists, conservationists, scientists, rangers and local communities poses a threat. Gorillas have been known to succumb to skin diseases and respiratory disorders. Outbreaks of Ebola can take many more gorilla lives than humans.
Poaching of infant mountain gorillas to cater to the illicit animal trade became a common threat in the early 2000s. Civil unrest also took a toll on the apes. The Rwandan genocide of the 1990s, and the Angolan wars of the 1980s, had an unsettling effect on the movement and habitat of gorillas. Large movements of refugees fleeing unrest, debris left behind by them, and warring militias posed major threats.
Weak local governments, virtual absence of forest regulations or conservation policies, and impoverished and disenchanted local communities all pose serious challenges to the survival of the apes.
Saving Gorillas
The only ray of hope for saving gorillas from extinction is conservation. A gradual rise in the population of mountain gorillas has taken place thanks to conservation programs. From the lowest point in 1980 when its numbers were just 254, it has now grown to 880.
Similar efforts in the Campo Ma’an National Park in Cameroon and Cross River National Park of Nigeria has held some hope for the tiny population of Cross-river gorillas dwelling there. Recent surveys show that the counts for these apes have not gone below the 300 mark.
But applying conservation measures to the lowland gorillas will be far more challenging given their wider habitat coverage. Efforts must be made to save the apes before it's too late.
Why Habitats Matter
10 May, 2025

A habitat consists of the ecosystem or environment in which an animal, plant or other living organism has lived and evolved over a considerable period of time. A habitat provides all the necessary ingredients they need to survive - food, water, shelter, the right temperatures, resources to ward off possible predators, and the right environs for reproduction and avoiding disease.
Without a habitat, a creature is virtually homeless and faces certain death. The habitat is a complete and intricate network of dependability provided to a species or many species by nature. A decimation of a habitat could spell doom for the biodiversity thriving in it, be it animals, insects, plants and other organisms.
Causes Of Loss Of Habitat
Causes of habitat loss can be natural factors like climate changes or catastrophes such as flooding, earthquakes, storms, volcanoes or other geological changes. Habitat loss can also be man-made. Excessive exploitation and destruction of natural resources through logging, fishing, mining, oil and gas exploration, development, road construction, animal agriculture, callous disposal of industrial waste and the introduction of unwanted species all contribute in depleting or destroying the richness of habitats.
Fragmentation and alteration of natural habitats are also serious threats to ecostystems.
Habitat Loss And Endangered Species
85 percent of species on the IUCN's Red List are considered truly threatened by loss of their habitats. For endemic species, the ones that are only to be found in one particular kind of habitat uniquely suited to its survival, the challenge to ward off extinction is truly serious. When an endemic species' habitat is destroyed, it has no other ecosystem to fallback on like generalized species. In absence of a suitable habitat, death becomes imminent.
Habitats of many species could cover large areas and overlap. But for species with extremely low populations, habitats are specialized and small, making them susceptible to extinction. In the event of catastrophes, the genetic limitations of a threatened species make it almost impossible to survive. The lack of genetic diversity among critically endangered species also breeds reproductive failure.
Tools used to measure habitat size are more scaled towards those with large contiguous areas than smaller ones. In the 1970s and 1980s, the debate over whether a single large or several small reserves was the answer to optimum conversation ultimately saw the emergence of the former theory as the accepted premise that large-sized habitats proved better survival grounds than smaller habitats. Bigger habitats act as buffers to human disruptions and also facilitates migration and food gathering.
Habitat Conservation
Presently, conservation efforts are dictated by the habitat condition or status of an endangered species. Certain delicate ecosystems and bio-diversities warrant conservation endeavors to such a degree that they fall under the category of biodiversity "hotspots". Endemic wildlife and near-extinction species harbored by such ecosystems are the focus of intense conservation efforts. Much of the risk comes from human encroachment.
Nearly 34 places of the world have been identified as biodiversity hotspots. These cover almost 2.3 percent of the earth's surface, but have lost almost 70 percent of their original vegetation. Endemic to these hotspots are an astonishing 50 percent of the world's plant species, and 42 percent of animal species. Efforts to preserve such biodiversity zones are at the forefront of conservation endeavors.
But while around 98% of the Earth has less species diversity, these ecosystems need just as much help as areas with lots of biodiversity. In fact, some biodiversity "coldspots" are home to very rare plants and animals. Protecting these areas before too much destruction occurs prevents us from having to work backwards.
Bringing Tigers Back From The Brink
9 May, 2025

Until a couple of decades ago, the tiger was killed purely for sport, especially in India. The times of the maharajahs abound with folklore of how these unfortunate animals were hunted down and showcased in village squares, courtyards and drawing rooms of the wealthy. But with the advent of wildlife reserves and stricter curbs on hunting, the downslide in tiger numbers was somewhat arrested. But the problems for the animal did not end there.
India has nearly two-thirds of the current world tiger population of around 3,890. Competing with that is the human population. At 1.25 billion, and with a growth-rate that shows no signs of abating, India's population is just 10 percent less than China's. But India's populace live in an area that is only one-third of its larger neighbor. A growing population translates into demand for more food and more agricultural space. Thus, encroachment of tiger reserves is an obvious fallout.
Towards the eastern part of the country, changes in climate are causing sea levels of the Bay of Bengal to rise, submerging the Sundarban jungles and its precious mangrove forests. These forests are home to one of the most magnificent beasts in the world, the Royal Bengal tiger. Apart from the threat of a rising sea, the Sundarbans are also witnessing increasing numbers of people, desperately searching for farming land. The tiger is cornered and has nowhere to go. The Sundarban forests of Bengal has been its natural habitat for thousands of years, long before man came.
The tiger population of Indonesia stood at only 371 in 2016. Most are concentrated in the island state of Sumatra. The Sumatran tiger is an endangered species and is the smallest of all tiger species. Ignition of wild forest fires, deforestation by an avaricious palm oil and timber industry, are constant threats to this animal. As a result, they have been squeezed into small pockets of dense hill forests of the island.
Among the most critically endangered species of all animals is the South China tiger. Most alarming, there have been no sightings of the animal in the past two decades – leading experts to believe that it may have become extinct.
The underlying story of the tiger in countries with huge population density is the same, be it India, Bangladesh, Nepal , Malaysia or Indonesia. Hunting land for the animals is shrinking in the face of increasing demand for industry and agriculture, and they are getting much less to eat than before. Domestic animals like cattle, dogs, and, in rare instances, even humans, have become the new food for the big cats. Villagers in search of wood (used as fuel for cooking) often fall prey to tigers. Ironically, the tigers now become the encroachers and end up being killed or hunted down by villagers in the name of self-defense.
Nowhere on earth can the population-land mismatch be more glaring than in Indonesia. The archipelago has a population as large as the United States but a land area just one-tenth the size, broken up into a few thousand islands. Virtually all of Indonesia's low-lying forests have been cleared for cultivation of its staple food, rice. Just imagine where all of this leaves the Indonesian tiger.
While the report card for tiger species safety indicates the lowest levels of threat for the Siberian tiger, the biggest of all wild cats numbering around 400 and having the largest habitat of all, the same cannot be said of the South East Asian species (Indonesia, Malaysia, Laos, Cambodia, Vietnam and Thailand). Urgent action needs to be taken before the crushing human density in these regions squeeze the tiger into extinction.
Add to the threat for tigers is widespread poaching. Tiger skins and other vital organs are in great demand in the underground black-market trade for wildlife exotica, especially in Thailand and China. Forest and wildlife departments are too understaffed or corrupt to keep poachers at bay. There's a lack of training, motivation and compensation for risk among forest personnel. Firearms, communications equipment, and vehicles for use by forest protection enforcement are either inadequate or antiquated.
There is hope. Thanks to the combined efforts of organizations and governments that have woken up to the importance of preserving this wonderful animal, the population of tigers has quite astonishingly shown a turn-around for the first time in over a century. There's been an impressive 22 percent rise in numbers in the last 6 years.
The figures compiled by the International Union for Conservation of Nature and Natural Resources (IUCN) show increases in tiger populations in India, Russia (home of the great Siberian tiger), Nepal and Bhutan. Improved protection measures, stricter laws concerning the safety of the animals, and enhanced conservation and breeding techniques adopted and put into practice by authorities, have given tiger enthusiasts reasons to cheer after a very long struggle.
Types of Deserts
8 May, 2025

Trade Wind Deserts
The trade winds in two belts on the equatorial sides of the Horse Latitudes heat up as they move toward the Equator. These dry winds dissipate cloud cover, allowing more sunlight to heat the land. Most of the major deserts of the world lie in areas crossed by the trade winds. The world's largest desert, the Sahara of North Africa, which has experienced temperatures as high as 57° G, is a trade wind desert.
Midlatitude Deserts
Midlatitude deserts occur between 30° and 50° N. and S., poleward of the subtropical highpressure zones. These deserts are in interior drainage basins far from oceans and have a wide range of annual temperatures. The Sohoran Desert of southwestern North America- is a typical midlatitude desert.
Rain Shadow Deserts
Rain shadow deserts are formed because tall mountain ranges prevent moisture-rich clouds from reaching areas on the lee, or protected side, of the range. As air rises over the mountain, water is precipitated and the air loses its moisture content. A desert is formed in the leeside "shadow" of the range.
Coastal Deserts
Coastal deserts generally are found on the western edges of continents near the Tropics of Cancer and Capricorn. They are affected by cold ocean currents that parallel the coast. Because local wind systems dominate the trade winds, these deserts are less stable than other deserts. Winter fogs, produced by upwelling cold currents, frequently blanket coastal deserts and block solar radiation. Coastal deserts are relatively complex because they are at the juncture of terrestrial, oceanic, and atmospheric systems. A coastal desert, the Atacama of South America, is the Earth's driest desert. In the Atacama, measurable rainfall 1 millimeter or more of rain may occur as infrequently as once every 5-20 years. Crescent-shaped dunes are common in coastal deserts such as the Namib, Africa, with prevailing onshore winds.
Monsoon Deserts
"Monsoon," derived from an Arabic word for "season," refers to a wind system with pronounced seasonal reversal. Monsoons develop in response to temperature variations between continents and oceans. The southeast trade winds of the Indian Ocean, for example, provide heavy summer rains in India as they move onshore. As the monsoon crosses India, it loses moisture on the eastern slopes of the Aravalli Range. The Rajasthan Desert of India and the Thar Desert of Pakistan are parts of a monsoon desert region west of the range.
Polar Deserts
Polar deserts are areas with annual precipitation less than 250 millimeters and a mean temperature during the warmest month of less than 10° C. Polar deserts on the Earth cover nearly 5 million square kilometers and are mostly bedrock or gravel plains. Sand dunes are not prominent features in these deserts, but snow dunes occur commonly in areas where precipitation is locally more abundant. Temperature changes in polar deserts frequently cross the freezing point of water. This "freezethaw" alternation forms patterned textures on the ground, as much as 5 meters in diameter.
Affluent Countries Aren't Doing Enough For Wildlife
7 May, 2025

Scores of species across the globe, including tigers, lions and rhinos, are at risk of extinction due to a plethora of threats imposed by mankind. We will lose many of these incredible species unless swift, decisive and collective action is taken by the global community.
Every country should strive to do more to protect its wildlife, but the richest countries, who can afford to do the most, are not doing enough. Less affluent countries are more committed to conservation of their large animals than richer ones. In comparison to the more affluent, developed world, biodiversity is a higher priority in poorer areas such as the African nations, which contribute more to conservation than any other region.
Researchers from Oxford's Wildlife Conservation Research Unit (WildCRU) have created a Mega-Fauna Conservation Index (MCI) of 152 nations to evaluate their conservation footprint. The benchmarking system evaluates three key measures: a) the proportion of the country occupied by each mega-fauna species that survives in the country (countries with more species covering a higher proportion of the country scoring higher); b) the proportion of mega-fauna species range that is protected (higher proportions score higher); c) and the amount of money spent on conservation - either domestically or internationally, relative to GDP.
The findings show that poorer countries tend to take a more active approach to biodiversity protection than richer nations. Ninety percent of countries in North and Central America and 70 percent of countries in Africa are classified as major or above-average in their mega-fauna conservation efforts.
Despite facing a number of domestic challenges, such as poverty and political instability in many parts of the continent, Africa prioritizes wildlife preservation and contributes more to conservation than any other region of the world. African countries make up four of the five top-performing mega-fauna conservation nations, with Botswana, Namibia, Tanzania and Zimbabwe topping the list. By contrast, the United States ranks nineteenth out of the twenty performing countries. Approximately one-quarter of countries in Asia and Europe are identified as significantly underperforming in their commitment to mega-fauna conservation.
Mega-fauna species are associated with strong 'existence values', where just knowing that large wild animals exist makes people feel happier. In some cases, such as the African nations, this link explains why some countries are more concerned with conservation than others. Larger mammal species like wild cats, gorillas and elephants play a key role in ecological processes as well as tourism industries, which are an economic lifeline in poorer regions.
The conservation index is intended as a call to action for the world to acknowledge its responsibility to wildlife protection. By highlighting the disparity in each nations' contributions it hopes to see increased efforts and renewed commitment to biodiversity preservation.
There are three ways countries can improve their MCI scores:
- They can 're-wild' their landscapes by reintroducing mega-fauna and/or by allowing the distribution of such species to increase;
- They can set aside more land as strictly protected areas;
- And they can invest more in conservation, either at home or abroad.
Some of the poorest countries in the world are making the biggest investments in a global asset and should be congratulated. Some of the richest nations just aren't doing enough.
Blowing Up Mountains For Profit
6 May, 2025

MTR mining is controversial for its devastating environmental impacts. Research studies have linked these environmental impacts to adverse outcomes in community health, raising questions about whether the benefits of MTR mining come at too high a health cost.
Coal companies use explosives to blast as much as 800 to 1,000 feet off the tops of mountains in order to reach thin coal seams buried deep below. To annihilate an entire mountainside, trees are ripped from the ground and brush is wiped away with huge tractors. The trees and brush are then set ablaze while deep holes are dug for explosives. Explosives are poured into the holes to literally blow mountaintops apart. Draglines, giant machines that can be the size of an entire city block, scoop dirt and rocks into nearby valleys and streams. Waterways are forever buried beneath the rubble.
“Spoil”—the earth and rock dislodged by mining—buries thousands of miles of headwater streams that ultimately feed the Mississippi River. Slurry, the residue from cleaning the coal, is impounded in ponds or injected into abandoned underground mine shafts where it can leach potentially toxic constituents such as arsenic, lead, manganese, iron, sodium, strontium, and sulfate that ultimately may end up in groundwater.
A form of surface mining, MTR mining first emerged in the late 1960s but remained a small source of coal until the mid-1990s. Now it is a major form of coal mining in West Virginia and Kentucky—the second and third largest coal-producing states after Wyoming—and it also occurs in Virginia and Tennessee. MTR mining uses less labor than underground mining, with massive draglines able to move 100 cubic yards of earth in a single scoop. And with underground coal supplies significantly depleted, MTR mining allows the harvest of seams of coal too thin to work from traditional coal mines.
So Called Reclamation
While mountaintop removal sites must be “reclaimed” by law after mining is complete, reclamation usually focuses on stabilizing rock formations and controlling erosion. The reforestation of the affected area is seldom achieved. Most flattened mountaintops receive little more than a spraying of exotic grass seed. The non-native flora provide vegetation but compete with tree seedlings that have difficulty establishing roots in the compacted backfill.
Coal companies often receive waivers following claims that economic development will occur on the destroyed mountaintop. But despite the promotion of reclaimed flat land for economic development, only a very small percentage of sites are developed.
According to the U.S. Environmental Protection Agency, it may take hundreds of years for a forest to re-establish itself on a removed mountain site.
Health Concerns
Pollutants may take any of several pathways into an area’s water supply. Some may leach into streams from the overburden that is dumped into valleys. Others hitch a ride in the slurry that is frequently injected directly into old mine shafts or impounded in ponds, from which it can seep through coal seams into ground-water. Where pollutants go once they hit groundwater is not easily predicted. Appalachian hydrology is complex and poorly charted. But severely contaminated water supplies have been the basis for multiple lawsuits against coal companies, alleging adverse health effects arising from contaminated drinking water. Residents may suddenly find that their water suddenly goes bad after mining begins nearby. One of the biggest health complaints is unremitting diarrhoea. Other conditions reported include learning disabilities, kidney stones, tooth loss, and some cancers.
Water contamination is not the only concern for communities. Residents quickly become accustomed to the rotten-egg scent of hydrogen sulfide. The sulfide is produced when bacteria reduce sulphate that presumably comes from mining runoff. Sulphide has always been recognized as an occupational hazard. Sulphide interferes with oxidative metabolism, and cardiac and nervous tissues are particularly sensitive, according to the World Health Organization. Chronic inhalational exposure in occupational settings has been shown to cause headache, irritability, and poor memory.
Another potential hazard is coal dust from both mining and processing the coal. The coal is crushed or pulverized, and that releases particulate matter into the air. Potential impacts from coal dust exposure include cardiovascular and lung disease, and possibly cancer.
The Clean Water Act specifies that streams must be suitable for “designated uses,” which include recreation, consumption of fish by humans, and protection of the health of aquatic life. However, health studies that have been conducted in Appalachia have revealed direct and indirect links to MTR mining. An investigation found that ecological impairment of streams correlated with human cancer mortality rates in surrounding areas. Three studies showed strong associations between MTR mining and increased cardiovascular disease, increased frequency of birth defects, and reduced quality of life.
Residents in mountaintop mining counties have 18 more unhealthy days per year than those in other non-mining counties, according to research. Over a life span of 78 years, that adds up to nearly 4 additional years’ worth of impaired mental and/or physical health.
The evidence that MTR mining may directly and adversely affect public health continues to become significantly stronger. Scientists say more research may still be needed, but the time has come to shift the burden of proof to the mining companies.
Environmental Concerns
Mountaintop removal coal mining, which as its name suggests, involves removing all or some portion of the top of a mountain or ridge to expose and mine one or more coal seams. The excess overburden is disposed of in constructed fills in small valleys or hollows adjacent to the mining site.
The U.S. Environmental Protection Agency has determined that mountaintop mines and valley fills lead directly to five principal alterations of stream ecosystems:
- springs and ephemeral, intermittent and perennial streams are permanently lost with the removal of the mountain and from burial under fill
- concentrations of major chemical ions are persistently elevated downstream
- degraded water quality reaches levels that are acutely lethal to organisms in standard aquatic toxicity tests
- selenium concentrations are elevated, reaching concentrations that have caused toxic effects in fish and birds
- macroinvertebrate and fish communities are consistently degraded.
In addition, six potential consequences of environmental impacts of mountaintop mines and valley fills operations include:
- loss of headwater resources
- impacts on water quality
- impacts from aquatic toxicity
- impacts on aquatic ecosystems
- cumulative impacts of multiple mining operations
- effectiveness of on-site reclamation and mitigation activities.
Mining operations are regulated under the Clean Water Act (CWA), including discharges of pollutants to streams from valley fills (CWA Section 402) and the valley fill itself where the rock and soil is placed in streams and wetlands (CWA Section 404). Coal mining operations are also regulated under the Surface Mining Control and Reclamation Act of 1977 (SMCRA).
EPA, in conjunction with the US Army Corps of Engineers, the US Department of the Interior's Office of Surface Mining and Fish & Wildlife Service, and the West Virginia Department of Environmental Protection, prepared an environmental impact statement looking at the impacts of mountaintop mining and valley fills. This was done as part of a settlement agreement in the court case known as Bragg v. Robertson, Civ. No. 2:98-0636 (S.D. W.V.). The purpose was to evaluate options for improving agency programs that will contribute to reducing the adverse environmental impacts of mountaintop mining operations and excess spoil valley fills in Appalachia. The geographic focus was approximately 12 million acres encompassing most of eastern Kentucky, southern West Virginia, western Virginia, and scattered areas of eastern Tennessee.
Environmental Impacts
Based on studies of over 1200 stream segments impacted by mountaintop mining and valley fills the following environmental issues were noted:
- an increase of minerals in the water - zinc, sodium, selenium, and sulfate levels may increase and negatively impact fish and macroinvertebrates leading to less diverse and more pollutant-tolerant species
- streams in watersheds below valley fills tend to have greater base flow
- streams are sometimes covered up
- wetlands are at times inadvertently, and other times intentionally, created; these wetlands provide some aquatic functions, but are generally not of high quality
- forests may become fragmented (broken into sections)
- the regrowth of trees and woody plants on regraded land may be slowed due to compacted soils
- grassland birds are more common on reclaimed mine lands as are snakes; amphibians such as salamanders, are less likely.
Cumulative environmental costs have not yet been identified.
In addition to health and environmental concerns, social, economic and heritage issues are created by mountaintop removal.
Regulation Is Not The Answer
Mountaintop removal is not necessary. It provides only a fraction of national coal production — an estimated 5-7 percent. It does not increase employment in Appalachia. Coal mining jobs have actually disappeared or been displaced as a result of heavily mechanized strip mining.
When the forests are gone and the streams destroyed, all the unique and diverse plant and animal species are destroyed with them. Irreplaceable ecosystems are being wiped out.
Decades of irreversible damage clearly show that regulatory compromises are no longer sufficient. Mountaintop removal mining is a crime against nature, wildlife and human health. It must be abolished, not regulated.
Oil & Gas: A Threat To World Wildlife
5 May, 2025

Wherever oil and gas can be easily found, land has already been exploited. The search is now focused on remote places, which means a direct invasion into virgin ecosystems and their inhabitants. New and unproven technologies are being used recklessly to extract hydrocarbons from deep within the Earth. The environmental consequences can be devastating.
Oil and gas exploration and production activities cause both direct and indirect effects on wildlife. Leaks and spills of oil, brine, and other contaminants are a key concern. Soils, vegetation, water quality, fish and wildlife, and air quality can all be harmed by the release of contaminants. Fish and wildlife habitat can be altered, fragmented, or eliminated. Oil and gas activities can disturb and displace wildlife, cause physiological stress, and can result in wildlife deaths.
Introduction of invasive species, especially along road and pipeline routes, can alter habitats. Disturbances caused by oil and gas activities can result in fundamental changes in ecological functions and processes, and lead to increased predation of declining species, reduced reproduction, and increased susceptibility to disease. Fish and wildlife may be injured by human presence, vehicles, exposure to contaminants, loss or degradation of habitat, or unauthorized takings.
The activities associated with oil and gas exploration cause a degree of disruption to the environment that's hard to replace, restore or repair. Development activities in the coastal areas of the Arctic Refuge (Arctic National Wildlife Refuge) have affected habitats of caribou, muskox and porcupine to an extent that even their watering sources have been polluted. Instances of bears feeding on wastes emanating from oil fields that have displaced its natural habitat are all too common. Maternity dens of polar bears have been disturbed, affecting their reproductive cycles.
Ecosystems, that fine balance between plants, organisms and wildlife evolved over millions of years, can be destroyed overnight by human activity. In addition to forest clearing and excavation, irritants like noise arising out of vehicular traffic can disrupt sleeping, resting and even hunting cycles of animals.
Access along seismic lines may require disturbing levels of vegetation removal. Vehicle travel along seismic lines damages soils and vegetation. Water quality may be degraded from sedimentation. Small spills and improperly handled wastes can degrade soils and waters, harm vegetation, fish and wildlife, air quality, and aesthetics. Air quality can be degraded from dust and engine emissions. Natural sound is interrupted by vehicles and drilling noises.
Pad construction removes or compacts soil and vegetation and may accelerate erosion and sedimentation. Leaks, spills, and discharges of oil, drilling muds, wastes, or other contaminants can degrade and harm soils, surface and ground waters, vegetation, fish and wildlife, and air quality.
Poorly cased and cemented wells (or improperly plugged wells) may lead to groundwater contamination. Wetlands may be damaged by road and pad construction or threatened by leaks and spills. Dark night skies can be impacted by night-time lighting on drilling rigs and gas flaring.
Natural sounds can be overwhelmed by construction and drilling noises. Air quality may be degraded by gas flaring, contaminant spills, dust, and engine emissions.
Offshore oil spills affect marine mammals through direct contact, ingestion of toxic oil, and inhalation of numerous chemicals. Immune system suppression, cancer, reproductive failure, liver and kidney damage, brain damage, and other health effects are the results of such spills.
The U.S. Environmental Protection Agency (EPA) has thoughtlessly issued permits to scores of oil drilling projects near protected zones, despite the harmful effects on wildlife from toxic wastes of such exploration activities.
Millions of gallons of chemically treated water, pumped out of a process known as hydraulic fracturing or “fracking”, spill out on a daily basis into neighboring forests and farmlands – polluting water used by animals and livestock.
Oil companies are responsible for the destruction of wildlife in some of the most protected and sensitive zones. A project off the coast of Sakhalin Island in Russia's Siberian region has affected the habitat of the critically endangered Western Grey Whale to a point where only 100 of these creatures are left today, of which breeding females comprise an appallingly low number of just 20. Exploration endeavors off the County Mayo coast in Ireland is threatening to wipe away wildlife habitats in the form of sand dunes, peat bogs and even grasslands bordering the shore. Habitats of the Brent geese and other popular regional birds that find safe havens in Broadhaven Bay in the Count Mayo stand threatened thanks to exploration activities in the region.
In Africa, roads, pipelines and the subsequent decimation of forest lands have eaten into territories of protected and endangered species like the Nigerian-Cameroon gorillas, the Western gorillas in Angola, the dwarf mongoose and the rare Angolan python.
Imagine gas being flared 24 hours a day for almost 50 years without a break by oil companies in just one region. That is the case in Nigeria, the world's largest oil flarer. Coupled with massive greenhouse emissions from such flares, oil spills and fires have completely obliterated not just wildlife, but all farmlands in the once naturally rich Niger Delta – making it one of the most polluted regions of the world. Places like the Virunga National Park in the Congo Basin in Africa and the Arctics, which still have enormous oil and gas deposits, are lucrative targets waiting to be exploited.
The lasting damage to the environment resulting from wanton oil and gas exploration is hard to fathom. The disruption of the ozone layer from excessive flared gas emissions, with direct effects on climate change and the decimation of entire ecosystems and wildlife, play havoc to the environment. A disturbing amount of greenhouse gas emissions can be traced to oil and gas extraction. The main component in natural gas, methane, is as much as 84 times more harmful to the atmosphere than carbon dioxide. Methane traps heat more effectively and intensifies global warming.
Humans are also effected by gas and oil exploration. Entire communities depend on the health of the ecosystems being destroyed. Public use of refuge areas are being restricted or prohibited. Although the areal extent of oil and gas exploration and production may be limited, the cumulative effects often extend to a much larger area. Cultural resources are threatened by increased human accessibility and fire. Scenic quality can be degraded by drilling rigs, roads, pads, and other equipment. Large crews disrupt visitors’ experiences.
Oil and gas exploration is a dirty and dangerous business that disrupts wildlife, human health, water sources, public lands and recreation. Energy resources that are environmentally-safe and easily accessible can reduce the harmful effects associated with oil and gas production. Renewable energy technologies and energy conservation, along with more responsible exploration practices, are essential to reducing the destructive effects of oil and gas production.
Sea Levels Are Rising
4 May, 2025

While studies show that sea levels changed little from AD 0 until 1900, sea levels began to climb in the 20th century.
The two major causes of global sea-level rise are thermal expansion caused by the warming of the oceans (since water expands as it warms) and the loss of land-based ice (such as glaciers) due to increased melting.
First, as the oceans warm due to an increasing global temperature, seawater expands—taking up more space in the ocean basin and causing a rise in water level.
The second mechanism is the melting of ice over land, which then adds water to the ocean.
Records and research show that sea level has been steadily rising at a rate of 0.04 to 0.1 inches per year since 1900. Since 1992, new methods of satellite altimetry (the measurement of elevation or altitude) indicate a rate of rise of 0.12 inches per year. This is a significantly larger rate than the sea-level rise averaged over the last several thousand years.
What Are Wildlands?
3 May, 2025

Some wildlands are protected, preserving natural areas for humans, animals, flora and fauna. Others are dissapearing at alarming rates, and simply drawing lines around specific areas is not enough. All of our planet is intricately connected. What happens outside a specific wilderness area affects what happens inside it.
Many wildlife habitats have become fragmented due to human development. Without the protection of vast expanses of wildlands to meet the minimum requirements of the largest, most widely roaming members of the ecosystem, they may dwindle or vanish forever. The loss of any species effects the entire ecosystem.
Biomes, or ecosystems, are large regions of the planet with shared characteristics such as climate, soils, plants and animals. Climate is an important factor that shapes the nature of an ecosystem, as well as precipitation, humidity, elevation, topography and latitude.
The five major biomes include aquatic, desert, forest, grassland and tundra biomes. Each biome also includes numerous types of sub-habitats.
By protecting and preserving ecosystems, we protect and preserve plant and animal species...including our own species.
Interacting With Marine Mammals
2 May, 2025

TYPES OF INTERACTION
Marine mammals in their natural habitat attract many tourists. Anyone who approaches a wild animal to touch, feed, or pose for photographs with it may be guilty of unintentional harassment. Sometimes the harassment is a matter of indifference, such as the many people on some parts of the west coast who frequently disregard posted signs and walk among elephant seals "hauled out" (who have hauled themselves out) on beaches.
Jet-skiing, kayaking, boating, and similar aquatic recreational activities may harass marine mammals in the wild by pursuing, annoying or tormenting them. Scuba or snorkel divers may find it "fun" to harass manatees by swimming around them or touching them, an example of intentional wildlife abuse by humans.
Many commercial tour operations regularly feed the wild animals to encourage them to approach their vessels, then offer tourists an opportunity to photograph, feed, pet or swim with marine mammals. Bottlenose dolphins in the southeast are the most affected animals in such activities.
RISK TO ANIMALS & HUMANS
These human interactions threaten the health and well-being of marine mammals. Possible consequences are driving them from their preferred habitat; disrupting their social groups; poisoning them with inappropriate food; and exposing them to fish hooks and boat propellers.
Wildlife fed by humans often become habituated to the free handout and, unwilling or unable to forage for food, develop the unnatural behavior of begging. This is crucial when young animals need to learn foraging skills.
Many people have been seriously injured when marine mammals who have become conditioned to being fed by humans have behaved aggressively toward them. Medical attention is usually required, and sometimes even hospitalization. Animals who behave aggressively in these situations are usually perceived as "nuisance animals," thus opening the door to animal "control" that may mean death to the animals.
ILLEGAL ACTIVITIES
The Marine Mammal Protection Act (MMPA) clearly sets forth the law in interactions with wild marine mammals. Interactions such as those mentioned above may constitute harassment and carry civil and criminal penalties, including fines as high as $20,000 and up to a year in jail. The MMPA defines harassment as "any act of pursuit, torment, or annoyance which has the potential to injure a marine mammal or marine mammal stock in the wild; or has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, sheltering."
Many marine mammals are endangered or threatened. Human interaction may therefore also be a violation of the Endangered Species Act.
WHAT YOU CAN DO
For the animals' sake, and for your safety, please don't feed, swim with, or harm marine mammals.
Share your knowledge with others. Encourage friends and family not to patronize boat operators and resorts that promote marine mammal encounter programs.
Ask the National Marine Fisheries Service to provide increased manpower and money to enforce the federal regulations prohibiting feeding and harassment of marine mammals. Write to: National Marine Fisheries Service, Office of Protected Resources; 1315 East-West Highway, 13th Floor; Silver Spring, MD, 20910.
To report a violation of the Marine Mammal Protection Act, call: NOAA Fisheries Enforcement Hot Line: 1-800-853-1964.
RESPONSIBLE MARINE MAMMAL VIEWING
The significant growth in whale-watching and other marine-mammal viewing increases the likelihood of a threat to the animals. The National Marine Fisheries Service has therefore set forth guidelines for land or water based viewing. If you choose recreational activities in the marine environment, please keep this "Code of Conduct" in mind:
Remain at least 100 yards from marine mammals. Binoculars will ensure that you view at a safe distance. If a whale approaches within 100 yards of your vessel, put your engine in neutral and allow the whale to pass.
Because many watchers on many vessels have a cumulative effect, limit your observing time to one hour. Avoid approaching the animals when another vessel is near.
Whales should not be encircled or trapped between boats, or boat and shore.
Offering food, discarded fish, or fish waste is prohibited.
Do not touch or swim with marine mammals. Never attempt to herd, chase or separate groups of marine mammals or females from their young.
If your engine is not running, whales may not recognize your location. To avoid collisions, make noise, such as tapping the side of the boat.
Do not handle pups. "Hauled out" seal or sea lion pups may appear abandoned when the mother is feeding. Leave them alone.
When viewing hauled out seals or sea lions, try not to let them see, smell or hear you.
Don't Be A Victim Of Greenwashing
2 May, 2025

A clean, safe and healthy environment is important, and everyone wants to see it protected. With this goal, many people donate millions of dollars each year to organizations that say they are working to protect the environment and wildlife. Many people also buy products that they believe to be animal and environmentally friendly. But how much do we really know about these organizations, companies and products? For example, do their campaigns demand a ban on toxic chemicals or take the bureaucratic route and call for more testing? Are they concerned about protecting animals as well as people, or do they at least ensure that their activities do not harm animals?
Many generous contributors are shocked to learn that some "environmental" and "conservation" groups use people's donations to support activities that are extremely harmful to the earth and animals and accomplish little or nothing to protect the environment. Some organizations support and even promote the poisoning of animals to test pesticides and other chemicals already known to be toxic. In fact, several well-known environmental groups are directly responsible for the creation of what have become the most massive animal-testing programs in history.
For example, despite killing hundreds of thousands of animals in cruel chemical toxicity tests, the EPA has not banned a single toxic industrial chemical in more than 10 years using its authority under the Toxic Substances Control Act. The chemical industry has long approved of the EPA's near-exclusive reliance on animal tests because their results are easily manipulated. In addition, required testing means that a company's products are safe from regulation for years while the products are tested and retested on animals. And, after decades of practice, industry representatives have perfected the art of arguing both sides of the animal-testing issue.
Here's how they do it: If a chemical is shown to cause cancer or other harmful effects in animals, industry representatives claim that the results aren't applicable to humans. At the same time, company officials happily display the results of EPA-required studies that suggest that their chemicals are not harmful. In these cases, companies laud the predictability of animal-testing and claim that their products are safe for humans. This is exactly what happened with cigarettes for more than 20 years, as industry scientists claimed that tobacco was safe for humans because animal tests, many of which involved cutting holes in the throats of dogs and forcing them to inhale cigarette smoke, did not cause cancer in animals.
The EPA's addiction to animal testing is so pervasive that even when evidence from human population studies implicates a chemical, the results are ignored by the EPA for the sake of conducting more and more animal studies. For years, population studies have shown that arsenic in drinking water causes cancer in humans. Yet the EPA dragged its feet for more than 20 years while thousands of animals were killed in tests that attempted to reproduce the effects already seen in humans.
The matter is made worse by the fact that the EPA refuses to subject animal-based test methods to the same level of scientific validation to determine their reliability and relevance to humans that all non-animal test methods must meet before they are accepted and used. The results of nonvalidated animal tests are scientifically useless as a basis upon which to regulate dangerous chemicals. So, the EPA's animal-testing programs do not protect either people or the environment, despite causing enormous animal suffering. Yet some environmental groups continue to call for ever-more animal-testing and defend every animal test, no matter how cruel or irrelevant.
Many companies and organizations spend more time and money claiming to be “green” through advertising and marketing than actually implementing business practices that minimize environmental impact. Research products and companies before making purchases. If you are a member of, or donate money to environmental or conservation groups, be sure to inquire that your donations are not being used to support greenwashing activities that harm animals and the environment.
Dealing With Woodchucks
1 May, 2025

KEEPING WOODCHUCKS OUT OF GARDENS
The best way to exclude woodchucks is by putting up a simple chicken wire or mesh fence. All you need is a roll of 4-foot high chicken wire and some wooden stakes. Once the job is done, it won't matter how many woodchucks are in the neighborhood because they won't be getting into your garden.
There are 2 secrets for making a successful fence:
Tip #1: The top portion of the fence only needs to be 2 ½ to 3 feet high but it should be staked so that it's wobbly -- i.e. the mesh should not be pulled tight between the stakes but rather, there should be some "give" so that when the woodchuck tries to climb the fence, it will wobble which will discourage him. Then he'll try to dig under the fence, so:
Tip #2: Extend your mesh fence 4 inches straight down into the ground and then bend it and extend the final 8-12 inches outward, away from the garden, in a "L"-shape which creates a false bottom (you can also put this mesh "flap" on top of the ground but be sure to secure it firmly with landscaping staples or the woodchuck will go under it). When the woodchuck digs down and hits this mesh flap, he'll think he can't dig any farther and give up. It won't occur to him to stand back a foot and THEN start digging!
IF YOU AREN'T WILLING TO PUT UP A FENCE, you can also try the following scare techniques, which do work in some cases:
1) Line your garden with helium-filled, silver mylar balloons or make a low fence of twisted, reflective mylar tape bought at your local party store. Be sure to purchase heavier weights to attach to the bottom of the balloons. The balloons bobbing in the wind will scare the woodchucks.
2) Sprinkle cayenne pepper around the plants and spray your plants with a taste repellent such as Ropel (available at garden stores) every 2 weeks.
GETTING WOODCHUCKS OUT FROM UNDER SHEDS
Woodchucks don't undermine foundations and really aren't likely to damage your shed. In spring and summer, the woodchuck under your shed is probably a mother nursing her young, which is why you should consider leaving them alone. Be sure you really need to evict the woodchuck before taking action. If you must, put some dirty kitty litter down the woodchuck burrow -- the urinated part acts as a predator odor, which often causes the entire family to leave. Ammonia-sprinkled rags or sweaty, smelling socks placed in the burrow may also cause self-eviction.
WOODCHUCKS & CHILDREN
Woodchucks are harmless vegetarians who flee when scared. Remember that even a small child looks like a giant predator to the woodchuck. There is no cause for alarm. Woodchucks live under houses and day care centers all over the country. Healthy woodchucks simply don't attack children or pets. If chased, woodchucks will quickly flee to their burrows.
WOODCHUCKS & RABIES
Woodchucks have a higher susceptibility to rabies than other rodents, yet the incidence of rabies in woodchucks is still very low. Woodchucks are much more susceptible to the roundworm brain parasite, which causes symptoms that look exactly like rabies. Roundworm is NOT airborne -- it can only be transmitted through the oral-fecal route, i.e. the ingestion of an infected animal's feces.
SETTING A TRAP FOR WOODCHUCKS & CATCHING A SKUNK
This is a common occurrence when traps are left open at night. You can let the skunk out without getting sprayed just by knowing that skunks have terrible eyesight and only spray when something comes at them fast, like a dog. If you move slowly and talk soothingly, you shouldn't get sprayed. Skunks stamp their front feet as a warning when they're nervous, so if the skunk stamps, just remain motionless for a minute until he stops stamping, then proceed. You can drape a towel -- slowly-- over the trap prior to opening it. Once the trap door is opened, the skunk will beeline for home. If you must trap and relocate a woodchuck, remember to close the trap at night so another skunk doesn't get caught.
TRAPPING WOODCHUCKS
Trapping won't solve the problem. As long as woodchuck habitat is available, there will be woodchucks. Even in studies where all the woodchucks are trapped out of an area, others from the surrounding area quickly move into the vacated niche. In addition, trapping and relocating woodchucks may lead to starving young being left behind. Homeowners are then horrified to smell a foul odor. It's much more effective to simply exclude woodchucks from areas where they're not wanted. Don't trap unless an animal is stuck somewhere and can't get out, or poses an immediate threat to humans or domestic animals.
Destructive Dams
30 Apr, 2025

Dams are barriers that hold back water and raise the water level, resulting in a reservoir. They are constructed for electric production, flood control, water supply and irrigation. Despite their benefits to humans, dams are destroying riparian ecosystems.
With an ever-increasing demand for energy and water, the amount and size of reservoirs is increasing around the world. Environmental consequences are outnumbering the benefits of dams – which degrade water quality, disrupt flows, affect the movement of sediment and nutrients, destroy habitats, and reduce recreational options. Dam reservoirs also slow and widen rivers, raising their temperatures. Water quality is degraded, and non-native species invade the ecosystems.
Dam Devastation
There is no such thing as “clean hydro power” on a large-scale. Hydro dams result in fluctuations in downstream flows, dewater stream channels, and cause the death and reduction of aquatic species.
Dams eliminate habitats both in the reservoirs and in the river below. Migratory fish may not survive their downstream travel, faced with numerous man-made obstacles. The return trip is even more challenging. Dams also contribute to global warming. Within the last 20 years, large dam methane emissions have equaled about the equivalent of 7.5 billion tons of carbon dioxide.
Degraded water quality results when organic materials from in and outside rivers build up behind dams. When the movement of sediment is disrupted, materials build up at the mouth of the reservoir, starving downriver ecosystems of vital ingredients. These backed-up materials, when decomposing, consume large amounts of oxygen, often resulting in algae blooms that create oxygen-starved “dead zones”. Temperatures of the water are affected, threatening marine life. When the oxygen-deprived, temperature affected water is released, downstream ecosystems also suffer.
Dam Development Out of Control
The United States has built thousands of dams, while some countries are just beginning to construct dams and are doing so at a disturbingly fast rate. Withing the next 30 years, thousands of new dams are expected to be constructed globally. Seventy percent of rivers impacted by the new dam construction are home to the greatest diversity of fish species on the planet. The irreversible destruction caused by these dams will affect both people and wildlife.
The Three Gorges Dam in China, built on the Yangtze River in 2003, supports a catchment area of almost 400,000 square miles. The Hubei region in which the dam is situated is home to 6,300 species of plants, 57 percent of which are endangered. This Central Yangtze region also supports 378 species of freshwater fish, 280 species of mammals and 166 species of reptiles. The project has severely affected temperatures of water and flow patterns that has taken a toll on aquatic life surrounding it. Instances of rotating turbine blades injuring fish abound. The most serious case of wildlife abuse has been the complete extinction of the Baiji, or Chinese river, dolphin.
Destruction of wetlands in the wake of the Three Gorges project has driven away tens and thousands of the rare Siberian crane that come to spend winters there. Today, only around 3,000 of these majestic birds are to be sighted in these wetlands. The Yangtze sturgeon, a species of fish endemic to the waters of this region, have been nearly driven to extinction. To make matters worse for wildlife survival, the human population in the Yangtze River Basin has doubled in the last 50 years which resulted in more dams to cater to the energy and irrigation needs of probably the biggest concentration of human population in the world. The number of dams in China is now 80,000, a majority of which have been constructed after 1949. What this has done to ecosystems and the biodiversity it supports is unfathomable.
Similarly, hydro power projects on the Mekong, Congo and Amazon rivers have caused incalculable losses to the once rich biodiversity and wildlife abounding their catchment areas. Dam construction on the Xingu River, a tributary of the Amazon, threaten the existence of 50 species of fish unique to the waters of the lower Xingu.
Dams interfere with the natural water flow of rivers and cause intense harm to downstream flora and fauna. Dam projects on the Mekong River in South-East Asia are causing massive disruption to aquatic ecosystems the river supports. Nearly two-thirds of the freshwater fish are long-distance migratory species that travel downriver for spawning in the Lower Mekong. The construction of dams on the upper Mekong has blocked such migratory routes, causing a huge drop in the population of such fish. A massive reduction in commercial fish catch by as much as 30 percent is a poignant indicator of this.
The above are not just isolated instances; hundreds of them occur in various parts of the world. Forest areas totaling 9 million hectares have been submerged as a result of the 1,800-odd dams constructed between 1980 and 2000. Ecosystems supporting flora and fauna were obliterated overnight. Unlike humans, wild animals are incapable of being forewarned of impending floods and this creates panic among them. Wary of leaving their habitat, some of them simply drown and the more fortunate migrate to safer but unknown territories.
Canals or drainage for irrigation purposes can also act as obstructions to wildlife habitats; so can power lines cutting through forest patches. Dams also affect the biosphere by way of greenhouse emissions.
Nearly 500 dam projects are currently in the pipeline worldwide. This spells danger to the 4,000 unique species of fish in just three major rivers systems alone – the Amazon, the Mekong and the Congo. What lies in store in numerous other river systems of the world are the extinction of many fish and other aquatic species, the decimation of floodplains, wetlands and farmlands that support a vast array of bird life, and erosion of coastal deltas.
Dam Removal
As communities begin to realize that the environmental, economic, and cultural consequences of dams outweigh the benefits, dam removal is becoming a popular occurrence. Removing dams helps to restore ecosystems and river flow for wild animals while restoring natural nutrient flow and sediment and nutrient flow.
Dam removal can also eliminate safety issues in a community, protect wetlands and coastal beaches, improve community water quality, restore recreational opportunities, and save taxpayer money.
Dams Are Not The Solution
To meet the needs of a burgeoning human population, plundering of natural resources and destruction of the world's ecosystem have been resorted to, posing a grievous threat to the future of Earth's wildlife. Among the millions of pinpricks inflicted on nature by man, one has been the wanton construction of dams.
Despite the construction of such a huge multitude of dams, over a billion people still are deprived of clean drinking water. Two billion are bereft of basic sanitation, and a similar number still lack electricity.
Scientific studies have shown that dams are not the green, clean and economical source of electricity they are made out be. For the sake of the world's dwindling wildlife population, governments and authorities must pay heed to their plight.
New technologies offer more environmentally responsible alternatives to dams. More efficient energy sources – including wind, solar, geothermal, tidal, wave and biomass options – can help eliminate our dependence on dams. Residential, commercial, and agricultural water reduction is also an effective solution to reducing the need for dams.
An Uphill Climb For Mountain Species
30 Apr, 2025

For many wildlife species, these impacts are problematic. Wolverines, for example, depend on cold snow-pack to den and store food. As this resource becomes less permanent due to warming, wolverine populations may become physically and genetically isolated – leading to decline of the species.
Scientists and conservationists have long recognized the importance of mountains for both biodiversity and human well-being. To achieve effective and lasting protection of wildlife and resources such as water, mountains have to be pre-eminent in our thinking and implementation of conservation measures.
Mountain species are threatened by human-related impacts that cause isolation. As natural landscapes continue to become fragmented, habitat "islands" limit the ability of wildlife populations to move among ecosystems.
Climate change also has impacts on high elevation environments. In fact, impacts in mountain ecosystems may be greater than any other after those in the Arctic. Scientists have determined that it is important for conservationists to see climate change not as one of numerous independent variables acting on species survival in mountain landscapes, but as an exacerbating force over the many direct human alterations to these areas.
The distribution of biodiversity in mountain ecosystems is determined by such things as elevation and slope. These variables and the relative intactness of these ecosystems is likely to be a critical factor in maintaining the health of mountain species in the face of climate change.
Tundra
29 Apr, 2025

● Arctic tundra in the Northern Hemisphere is between the North Pole and the boreal forest. In the Southern Hemisphere it exists on remote islands off the coast of Antarctica and on the Antarctic peninsula. The Arctic and Antarctic tundra are home to over 1,700 species of plants including grasses, mosses, sedges, lichens and shrubs.
● Alpine tundra is a high-altitude ecosystem located on mountains around the earth at elevations above the tree line. Alpine tundra soils are well drained compared to tundra soils. Alpine tundra is home to small shrubs, dwarf trees, tussock grasses and heaths.
The tundra is home to the arctic fox, wolverines, polar bears, northern bog lemmings, muskox, arctic terns, muskoxen and snow buntings.
Tundra are the coldest areas on the planet and are quite different from every other habitat on earth. During the summer, the days receive 24 hours of sun. During the winter, the sun is almost absent entirely. Animals of the polar regions are adapted to frigid temperatures, often with thick layers of fat or blubber to insulate their bodies.
The two main polar regions are the Arctic and the Antarctic. The Arctic Circle and Arctic Tundra are located at the North Pole and stretch 5 million square miles to the top of the Northern Hemisphere. The Antarctic is located at the South Pole. While the animals differ greatly at each pole, the polar regions are similar environments.
The Arctic is an ice continent floating on the ocean. The Antarctic is a rocky continent that is covered in ice. Little rainfall occurs in the polar regions, and there is very little water in the air. The Arctic is connected to Canada and Europe, so more plant and animal species are found there.
The Antarctic is completely isolated from other land masses, so fewer plants and animals are found there. The Arctic Circle also features warmer springs and summers, encouraging the growth of plants. Herbivorous animals are attracted to feed on the plants and grasses.
1,700 species of plants and 48 species of land mammals are known to live in the tundra. Millions of birds also migrate there each year for the marshes. Few frogs or lizards live in the tundra. Foxes, lemmings, Arctic hares and Arctic owls live in the tundra. Wolves are the top predators. Polar bears dominate the frozen waters. Seals, sea lions, orcas, whales, walruses and narwhals feed on fish in the Arctic Circle.
In Antarctica, no plants grow on the surface so animals live on carnivorous diets. Numerous species of fish, crustacean and mollusc are found in the waters beneath the ice for birds and mammals to feed on. Penguins are the most common animal. Larger predators include leopard seals, orcas and whales.
Changes in the climate are the biggest threat to polar regions. Increasing temperatures can cause the ice to melt, threatening habitats.
The Antarctic Treaty of 1961 prevents Antarctica from being commercially exploited. The Arctic is not protected where mining for oil and minerals, over-fishing and hunting threatens species and habitats.